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Bubble capture by a propeller
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A small air bubble (radius a) is injected in water (kinematic viscosity ν) in the vicinity
(distance r0) of a propeller (radius rp , angular frequency ω). We study experimentally
and theoretically the conditions under which the bubble can be ‘captured’, i.e. deviated
from its vertical trajectory (imposed by gravity g) and moved toward the centre of the
propeller (r =0). We show that the capture frequency ωcapt follows the relationship

ωcapt =

(
2ga2

9βνrpf (Reb)

)(
r0

rp

)2

(1 + cosϕ0),

where β is a dimensionless parameter characterizing the propeller, f (Reb) is an
empirical correction to Stokes’ drag law which accounts for finite-Reynolds-number
effects and π/2−ϕ0 is the angle between the axis of the propeller and the line between
the centre of the propeller and the point where the bubble is injected. This law is
found to be valid as long as the distance d between the propeller and the water surface
is larger than 3r0. For smaller distances, the capture frequency increases; using an
image technique, we show how the above expression is modified by the presence of
the surface.

1. Introduction
Ship wake usually refers to the classical Kelvin wave system observed behind

surface vessels and characterised by a well-known constant angle of 39◦ (Kelvin 1887;
Lighthill 1978). As they cruise, surface vessels also entrain air and produce a bubbly
wake, illustrated in figure 1. The width of this wake typically scales with the width of
the vessel, whereas its length may extend up to one hundred ship lengths. The presence
of bubbles behind the ship changes the speed of sound in the water (Batchelor 1967;
Landau & Lifshitz 1959) and associates a strong acoustic signature to the motion
of the ship (NDRC 1946; Crighton & Ffowcs Williams 1969; Marmorino & Trump
1996). Many studies have been dedicated to the acoustical properties of bubbly wakes
(Trevorrow, Vagle & Farmer 1994) as well as to the origin of the bubbles: cavitation
(Weitendorf 2001), bow wave (Waniewski, Brennen & Raichlen 2002; Zhu, Oguz &
Prosperetti 2000), etc.

While the role of the propeller has long been recognized in the generation of
cavitation bubbles, its importance with respect to the bubbly far wake (several vessel
lengths downstream) does not seem to have been reported. Its effect is illustrated in
figure 1 where a two-propeller vessel produces a bubbly far wake composed of two
‘white lines’ (figure 1a) whereas a vessel using a single propeller produces only one
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(a)

(b)

Figure 1. Airplane visualization of bubble wakes: (a) TCD Foudre (http://www.netmarine.
net/bat/tcd/foudre/caracter.htm) with two propellers, (b) CMT Lyre (http://www.netmarine.
net/bat/cm/lyre/caracter.htm) with one propeller.
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Figure 2. Experimental set-up: (a) sketch of the experiment, (b) definition of the
injection location.

white line (figure 1b). This observation shows that the propeller catches the bubbles
around it and plays a major role in the structure of the bubbly far wake. This
mechanism predominates in the formation of bubbly far wakes in water with a low
concentration of dissolved gas, where cavitation does not occur. The present study
considers the role of the propeller in this capture process. In order to elucidate the
physical laws governing the capture, we drastically simplify the problem and reduce
it to a laboratory experiment in which we examine the capture of a bubble by a
propeller (radius rp , angular frequency ω), rotating in a tank where the fluid is at rest.
The study is conducted in water (kinematic viscosity ν), in the high-Reynolds-number
regime (Re ≡ r2

pω/ν � 1) and with air bubbles (radius a) corresponding to a low

Galiléo number (Ga ≡ ga3/ν2 < 1).

2. Experimental set-up and protocol
The experimental set-up is sketched in figure 2(a): the propeller is immersed at a

depth d below the free surface in a 4 m long tank with a 1 m2 cross-section filled
with tap water. A typical experiment first consists of injecting air bubbles in water
at rest (propeller at rest) at a controlled location (r0, ϕ0) defined in figure 2(b). Once
a constant bubbly regime is achieved (figure 3a), the rotation speed of the propeller
is increased (figure 3b) until the capture (figure 3c, d). The capture frequency ωcapt is
stored and the experiment is repeated with a different bubble size a, injection location
(r0, ϕ0) and propeller position d .
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(b)
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Figure 3. Example of a typical experiment: (a) constant bubbling regime without propeller
rotation ω = 0, (b) deviation of the vertical bubble trajectory for ‘moderate’ rotation ω <ωcapt,
(c) deflection of the vertical motion near the transition to the capture ω ∼ ωcapt, (d) capture of
the bubbles in the ‘high’ rotation regime ω >ωcapt.

We use a three-blade brace propeller (rp = 20 mm) designed for model boats and
commercialized by RIVABO, driven by a 12 V GRAUPNER electric motor powered
by a DC power supply allowing a maximum rotation speed of approximately
600 rad s−1 (∼ 6000 RPM). The rotation speed is measured using an optical coder
made of a laser impinging on a photodiode. The laser beam is interrupted once per
revolution resulting in a periodic output signal from the photodiode whose frequency
is then directly obtained using a digital oscilloscope.

In order to study the influence of the bubble size on the capture angular speed,
glass capillary tubes of various diameters are used to create air bubbles with radii
ranging from 100 to 250 µm. The air flux is regulated with a KS200 syringe-pump.
The size of the bubbles is known to be influenced by the flow created by the propeller
(Kulkarni & Joshi 2005). For this reason, when the rotation speed is varied, the size of
the bubbles is systematically measured at the exit of the capillary tube by an optical
system composed of a LEICA MZ16 binocular coupled with a KODAK high-speed
video camera running at 4500 frames per second. The resolution of the ensemble is
300 pixels per mm at a working distance of 35 cm.

The bubble spacing is chosen large enough to avoid interaction between successive
bubbles (Katz & Meneveau 1996) and the bubble trajectory (r(t), ϕ(t)) is always
observed to remain in a vertical plane.

To characterize the dependence of the capture frequency on the injection location,
the capillary tubes are mounted on a 3-axis displacement table.
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Figure 4. (a) Evolution of the capture frequency ωcapt with the reduced distance from injection
r0/rp , for various bubble radii a and injection angles ϕ0. (b) Evolution of the reduced capture
frequency ωcapt/(ga2/(νrp)) with the injection angle ϕ0 for a constant reduced distance r0/rp = 4.

3. Experimental results
The evolution of the capture frequency ωcapt with the reduced injection distance

r0/rp is displayed in figure 4(a) for different polar angles ϕ0 and bubble radii a. For
a given bubble size a and injection angle ϕ0, the capture frequency increases as the
square of the distance. Note also that ωcapt is highly sensitive to the bubble size: for
the same injection position, figure 4(a) shows that the capture frequency is multiplied
by a factor of five when the bubble size is multiplied by 2.15. Finally, figure 4(b) also
reveals that the capture frequency ωcapt slowly changes with the injection angle ϕ0.

4. Model
4.1. Scaling arguments

Scaling arguments can partly explain the experimental trends revealed by figure 4(a).
As a first approximation, let us assume that the motion of a bubble is mainly governed
by the buoyancy force B and the drag force D. In contrast to the case of a bubble
rising in a liquid at rest, where the drag force is purely vertical, the propeller inflow
induces a horizontal component in this force. We guess that a bubble is captured if
this horizontal component, evaluated at the injection point, has the same order of
magnitude as the buoyancy force. For small bubbles of radius a in the Stokes regime,
the drag force is D ∼ µUa where µ is the dynamic viscosity of water and U is the
slip velocity between the bubble and the flow induced by the propeller at the bubble
location. The buoyancy force is B ∼ ρga3 where ρ is the water density and g denotes
acceleration due to gravity. At the injection point we can then write µU0a ∼ ρga3.
If we assume that the flow created by the propeller can be modelled by a sink of
strength Q ∼ r3

pωcapt we can recast the above drag force in the form µaQ/r2
0 , which

yields

ωcapt ∼
(

ga2

νrp

) (
r0

rp

)2

. (4.1)
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Figure 5. (a) Visualizations of the streaklines using fluorescein. (b) Notation for the
inflow model.

According to the experimental results in figure 4(a), this scaling argument provides
the correct evolution of ωcapt with the injection distance as well as a realistic depen-
dence on the bubble size. But this simple model does not account for the dependence
on the polar angle of injection revealed by figure 4(b), which shows that the reduced
capture frequency decreases when the injection angle increases and is lowered by a
factor of 1.6 when ϕ0 increases from 10◦ to 80◦.

A more refined model is thus required to fully predict the dependence of the angular
capture speed on the various parameters of the problem.

4.2. Propeller inflow

Figure 5(a) shows some fluorescein visualizations of the inflow created by the
propeller. This technique reveals that the streaklines are purely radial. Moreover,
since the flow is steady, the streaklines are also streamlines and the flow can thus
be written in the form U = U (r)er . These visualizations and all the measurements
reported in this paper were performed over a time smaller than the characteristic
diffusion time (r2

0/ν ≈ 20 min). By Kelvin’s theorem, the inflow region may thus be
considered as irrotational at all times relevant in the experiments. Therefore we are
in position to use an irrotational approximation to express U (r).

Moreover, for injection distances much larger than the propeller radius rp , it is
reasonable to approximate the propeller inflow as a point-sink flow:

U (r) = − Q

2πr2
, (4.2)

where Q is the sink strength. Dimensional considerations imply Q ∼ r3
pω where ω is

the propeller angular speed. Therefore we model the propeller inflow by a point-sink
flow of strength Q =βπr3

pω, where β is a coefficient depending on the propeller
characteristics (see figure 5b for details).

Let us remark on the modelling of the flow created by the propeller. Owing to
mass conservation, a ‘natural’ model could have been a dipole. This is the case at
low Reynolds number. However, at high Reynolds number the propeller produces
a thrust, which is not compatible with a dipole. In this regime, the sink/source
symmetry is broken and the propeller behaves as a laminar sink for a large part
of its surroundings and as a turbulent jet for the remaining part. Since we are only
concerned with the upstream region of the propeller, we only discuss here the laminar
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sink domain and verify experimentally that the streamlines (figure 5a) are straight
rays (which would not have been the case with a dipole).

4.3. Bubble trajectory

Neglecting the bubble density with respect to the water density ρ, the equation of
motion of a bubble of radius a and volume V moving at velocity V in an irrotational
flow of velocity U is (Magnaudet & Eames 2000)

ρVCM

dV
dt

= ρCD

πa2

2
‖U − V‖ (U − V ) + ρV (1 + CM )

DU
Dt

− ρVg, (4.3)

where CD and CM stand for the drag and added-mass coefficients, respectively, and
D/Dt denotes the material derivative.

For a spherical particle CM is known to be 1/2 and (4.3) may be rewritten in the
form

dV
dt

=
9ν

a2
f (Re) (U − V ) + 3

DU
Dt

− 2g, (4.4)

where Re = 2a‖U − V‖/ν and f (Re) is an empirical correction to Stokes’ drag
law which accounts for finite-Reynolds-number effects (in what follows we use the
standard Schiller–Neumann correction f (Re) = 1 + 0.15Re0.687 (Clift, Grace & Weber
1978). We select an expression for CD appropriate to rigid spheres rather than to
clean bubbles because our experiments are carried out in tap water which is known
to contain impurities. Therefore, small bubbles may reasonably be approximated by
rigid spheres (Magnaudet & Eames 2000).

In a quiescent fluid, the bubble would rise with a speed V b ≡ −2ga2f −1(Reb)/9ν,
with Reb =2a‖Vb‖/ν. In other words the terminal Reynolds number Reb is such that
Rebf (Reb) = 4ga3/9ν2. Introducing the rising speed V b, (4.4) simplifies to

dV
dt

=
V b

τ
+

U − V
τ ′ + 3

DU
Dt

, (4.5)

where τ ′ = a2f −1(Re)/9ν and τ ≡ a2f −1(Reb)/9ν. Due to the weak sensitivity of τ ′ to
the Reynolds number, we assume in the following τ ′ 	 τ . In a steady uniform flow
U , this means that the bubble velocity V tends towards the constant velocity V b + U
with a characteristic time τ .

For the sink flow U = U (r)er , this equation takes the form

dV
dt

=
V b + (1 + τ/τe) U − V

τ
, (4.6)

where 1/τe ≡ 3dU/dr , τe being the local characteristic variation time of the inflow
velocity.

The ratio τ/τe in (4.6) measures the ability of the bubble to adapt to the flow
variations: if τ/τe 
 1, the bubble adapts its speed almost instantaneously to the
external conditions, since during its reaction time τ the flow remains almost uniform.
In the other limit, τ/τe � 1, the flow varies well before the bubble adapts its speed
and the bubble never reaches an equilibrium state.

In our case, using expression (4.2) for the propeller inflow U , the ratio τ/τe is

τ

τe

≈ β

3

r3
pωa2f −1(Reb)

νr3
. (4.7)

In the propeller region (r ≈ rp), equation (4.7) becomes τ/τe ≈ βωa2f −1(Reb)/3ν ≈
0.09 for a bubble of 100 µm radius and a rotation speed of 100 rad s−1, and using the
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measured value β ≈ 0.2. However this time ratio decreases as r−3. Therefore in the
above example it is reduced to 1.1 × 10−2 for r/rp = 2. Thus, under the conditions
of the present experiments, we may consider that the adaptation time of the bubble
is small compared to the characteristic time of the flow variation, except in the
immediate vicinity of the propeller. Therefore, (4.6) may be simplified to

dV
dt

=
V b + U − V

τ
. (4.8)

Hence, the bubble velocity V reaches the local velocity V b + U after a time of the
order of τ . As τ/τe 
 1, the transient stage of the motion may be neglected and we
can write the bubble velocity as a function of position only in the form

V 	 V b + U . (4.9)

The bubble velocity is the sum of two velocities that can both be derived from
elementary solutions of Laplace’s equation. Noting that the problem is symmetric
about the vertical (z) axis, we can introduce the so-called Stokes streamfunction Ψ

suitable for axisymmetric problems solved in spherical coordinates and split it into
the form

Ψ = Ψb + Ψp

where

Ψb =
1

2
Vbr

2 sin2 ϕ, Ψp =
Q

2π
cosϕ.

Bubble trajectories are given by iso-Ψ curves. Therefore the coordinates (r, ϕ) of a
bubble initially released at (r0, ϕ0) must satisfy the condition Ψ (r, ϕ) = Ψ (r0, ϕ0). The
problem is now similar to a Rankine solid body problem (Lamb 1932).

The corresponding trajectories are presented in figure 6(a). For a given sink strength
and bubble size we can define a capture zone (dark region in figure 6a) enclosing the
injection points for which bubbles are captured. The equation of the envelope E is

given by r =
√

Q(1 − cos ϕ)/(πVb sin2 ϕ).
The capture frequency ωcapt is the value of ω for which the envelope passes through

the injection point with coordinates (r0, ϕ0). Replacing Q and Vb by their expressions
above we obtain

ωcapt ∼ ω0f
−1(Reb)

(
r0

rp

)2

(1 + cos ϕ0) (4.10)

with ω0 = ga2/νrp .

4.4. Comparison with experiments

The evolution with f −1(Reb)(r0/rp)2(1 + cosϕ0) of the reduced capture frequency
ωcapt/ω0 is shown in figure 6(b). The different experimental sets collapse onto a single
curve and the linearity predicted by equation (4.10) is achieved for all experimental
conditions. The prefactor 2/(9β) is found to be of order unity (1.3).

5. Influence of the free surface
All the results reported so far have been obtained in the ‘deep’ limit where the

distance r0 between the bubble and the propeller is small compared to the distance
d between the propeller and the free surface (figure 7a). The corresponding capture
frequency, described by (4.10) is now referred to as ωcapt−∞ and we study what happens
when the ratio r0/d decreases.
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Figure 6. (a) Theoretical trajectories of the bubbles and envelope E described in § 4.3.
(b) Comparison between the reduced capture frequency obtained theoretically (4.10) and
the experimental measurements.
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Figure 7. (a) Model for the free-surface effect. (b) Evolution of the reduced capture frequency
ωcapt/ωcapt−∞ as a function of d/rp . The location of the injection point is fixed (r0/rp = 4,
ϕ0 = 60◦).

5.1. Experimental evidence

Figure 7(b) presents the evolution of the reduced capture frequency ωcapt/ωcapt−∞
with the reduced distance d/rp between the free surface and the propeller, where
the injection point is maintained at a fixed position: r0/rp = 4 and ϕ0 = 60◦. This
figure reveals that the capture frequency increases when the distance between the
free-surface and the propeller decreases. In this example, the ‘deep’ limit, ωcapt/

ωcapt−∞ ≈ 1 is reached for d > 10rp .
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5.2. Modification of the model

To introduce the effect of the free surface into our irrotational model we add an
‘image’ propeller to the actual one (figure 7a). Mathematically, this is achieved by
adding an image streamfunction Ψi to the initial model. Thus we now have

Ψ = Ψb + Ψp + Ψi

where

Ψb =
1

2
Vbr

2 sin2 ϕ, Ψp =
Q

2π
cosϕ, Ψi =

Q

2π

r cos ϕ − 2d√
r2 + 4d2 − 4rd cosϕ

.

Duplicating the previous approach, we obtain the capture frequency of a bubble of
radius a injected at the location (r0, ϕ0) in the form

ωcapt

ωcapt−∞
=

1 − cos ϕ0

− cosϕ1 − cos ϕ0

. (5.1)

In the ‘deep’ limit, ϕ1 → π and (5.1) tends toward 1. For a bubble on the surface,
ϕ1 = π − ϕ0 and the capture frequency goes to infinity: bubbles located on the
surface cannot be captured since they are equally attracted by the propeller and its
image. The result corresponding to (5.1) is displayed with a solid line in figure 7(b).
While the model and the experimental data follow the same qualitative trend, the
experimental values of ωcapt diverge for distances to the surface larger than those
predicted theoretically. We attribute this difference to a finite-size effect: the actual
position of the theoretical point sink which models the propeller is experimentally
defined up to an error of the order of rp since the distance between the free surface
and the propeller cannot be smaller than rp . To take this effect into account, we
introduce an effective distance between the surface and the propeller d′ = d − λrp

depending on a parameter λ. The best fit between the theoretical curve and the
experimental data is obtained for λ=1 (dashed line in figure 7b).

The above model holds provided the deformation h of the surface remains small
compared to the distance d . If U is the characteristic velocity at the surface, we
evaluate h ≈ U 2/g, and h/d ≈ U 2/gd . In our case, U ≈ βr3

pω/d2 and we deduce
h/d ≈ r6

pβ2ω2/(gd5). The model thus applies in the limit d/rp � (rpβ2ω2/g)1/5, a
criterion satisfied for the data presented in figure 7(b).

6. Conclusion
We have carried out an experimental and theoretical investigation of the capture

of ‘small’ air bubbles by a propeller embedded in water at rest. In the ‘deep’ limit
(d/rp � 10) we find that the capture frequency is given by equation (4.10) and thus
changes with the size of the bubble a, injection distance from the propeller r0 and also,
in a more subtle way, with the angular injection location ϕ0. We have first quantified
these three dependences experimentally and then derived them theoretically using
a potential flow approach. The main theoretical idea is that for ‘small’ bubbles,
the bubble velocity V is merely the sum of the velocity imposed by the propeller
U and the rise velocity in a liquid at rest (V b ≡ −2ga2f −1(Reb)/9ν). This velocity
representation allowed us to superimpose the corresponding streamfunctions and to
determine bubble trajectories as well as the envelope of the capture zone.

In the ‘shallow’ situation (d/rp < 10), we found that the capture is made less likely
by the presence of the free-surface. We used an image approach to account for the
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free-surface effect and showed that the modified capture frequency is in fairly good
agreement with the experimental measurements.

This approach can be adapted to more complicated configurations, by replacing
the sink flow induced by the propeller by the actual flow in the region surrounding
the propeller area. Situations involving more than one propeller may also be analysed
in the same way. However the symmetry with respect to the vertical direction will
then be lost, and the streamfunction approach will have to be replaced by a direct
computation of the three-dimensional bubble trajectories.

We thank Xavier Lenhardt who impulsed this study, J. P. Moretto for providing
real data and J.-M. Quenez and O. Perelman for improving our understanding of
naval construction constraints.
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